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Abstract. Ensemble classifiers tend to outperform their component base
classifiers when the training data are subject to variability. This intu-
itively makes ensemble classifiers useful for application to the problem of
aircraft fault detection. Automated fault detection is an increasingly im-
portant problem in aircraft maintenance and operation. Standard meth-
ods of fault detection assume the availability of data produced during all
possible faulty operation modes or a clearly-defined means to determine
whether the data represent proper operation. In the domain of fault de-
tection in aircraft, the first assumption is unreasonable and the second is
difficult to determine. Instead we propose a method where the mismatch
between the actual flight maneuver being performed and the maneuver
predicted by a classifier is a strong indicator that a fault is present. To
develop this method, we use flight data collected under a controlled test
environment, subject to many sources of variability. In this paper, we
experimentally demonstrate the suitability of ensembles to this problem.

1 Introduction

Ensembles have been shown to improve the generalization performance of many
types of classifiers in many real world pattern recognition problems (e.g., [3]).
The improvement tends to increase as the variability among the classifiers in
the ensemble increases [10]. This property of ensembles intuitively makes them
useful in understanding aircraft data, which is subject to considerable variability.
In this paper, we discuss the results of applying ensemble methods to aircraft
data for fault detection.

A critical aspect of operating and maintaining aircraft is detecting prob-
lems in their operation in flight. This allows maintenance and flight crews to fix
problems before they become severe and lead to significant aircraft damage or
a crash. Fault detection systems are becoming a standard requirement in most
aircraft [1, 8]. However, most systems produce too many false alarms, mainly due
to an inability to compare real behavior with modeled behavior, making their
reliability questionable in practice [7]. Other systems assume the availability of
data produced during all possible faulty operation modes [1, 4, 8]. Because of the



Table 1. Conceptual open loop model illustrating assumed causal relationships.
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highly safety-critical nature of the aircraft domain application, most fault detec-
tion systems must function well even though fault data are non-existent and the
set of possible faults is unknown. Models are often used to predict the effect of
damage and failures on otherwise healthy (baseline) data. However, while mod-
els are a necessary first start, the modeled system response often does not take
operational variability into account, resulting in high false-alarm rates [5, 7).

In this paper, we use in-flight aircraft data that were collected as part of a
research effort to understand the sources of variability present in the actual flight
environment, with the purpose of reducing the high rates of false alarms [5,9].
That work described aircraft operation conceptually according to the open-loop
causal model shown in Table 1. We assume that the maneuver being performed
(M) influences the observable aircraft attitudes (A), which in turn influence the
set of possibly observable physical inputs (I) to the transmission. The physical
inputs influence the transmission in a variety of ways that are not typically
observable (R); however, they influence outputs that can be observed (O).

Our approach to fault detection in aircraft depends fundamentally on the
assumption that the nature of the relationships between the elements M, A, I,
R, and O described above change when a fault materializes. As mentioned earlier,
the many approaches that try to model only the set of possible outputs (O) and
indicate the presence of a fault when the actual outputs do not match the model
do not account for operational variability. Also, the output space is often too
complicated to allow faithful modeling and measuring differences between the
model and actual outputs. This latter difficulty remains even if one attempts
to model the output as a function of the flight maneuver or other influence due
to noise, wind, and other conditions. Approaches to fault diagnosis (e.g., [12])
attempt to predict either normal operation or one of a designated set of faults.
As stated earlier, this is not possible in the aircraft domain because the set of
possible faults is unknown and fault data are non-existent. In this work, we create
a system diagrammed in Figure 1. We create classifiers that predict the flight
maneuver (M) as a function of other available data such as the outputs (O).
The data that we use contain the actual maneuver, but in general, this may be
calculated using pilot input and/or attitude data. We propose that mismatches
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Fig. 1. Online Fault Detection System Block Diagram.

between the predicted maneuver and the actual maneuver being performed is a
strong indicator for the presence of a fault.

In order for our method to have a low false-alarm rate, we need a maneuver
classifier with the highest performance possible. In addition to using Multilayer
Perceptrons (MLPs) and Radial Basis Function (RBF) networks, we use ensem-
bles [2,10] of MLPs and RBF networks. We have also identified sets of maneuvers
(e.g., three different hover maneuvers) that are similar enough to one another
that misclassifications within these groups are unlikely to imply the presence of
faults. Additionally, we smooth over the predictions for small windows of time
in order to mitigate the effects of noise.

In the following, section 2 discusses the aircraft under study and the data
generated from them. We discuss the ensemble methods that we used and the
associated data preparation that we performed in section 3. We discuss the
experimental results in section 4. We summarize the results of this paper and
discuss ongoing and future work in section 5.

2 Aircraft Data

The data used in this work were collected from two helicopters: an AH1 Cobra
and OH58c¢ Kiowa [5]. The data were collected by having two pilots each fly two
designated sequences of steady-state maneuvers according to a predetermined
test matrix [5]. It uses a modified Latin-square design to counterbalance changes
in wind conditions, ambient temperature, and fuel depletion. Each of the four
flights consisted of an initial period on the ground with the helicopter blades at
flat pitch, followed by a low hover, a sequence of maneuvers drawn from the 12
primary maneuvers (e.g., high-speed forward flight), a low hover, and finally a
return to ground. Each maneuver was scheduled to last 34 seconds in order to
allow a sufficient number of cycles of the main rotor and planetary gear assembly
to apply the signal decomposition techniques used in the previous studies [5].
Summary matrices were created from the raw data by averaging the data
produced during each revolution of the planetary gear. The summarized data
consists of 31475 revolutions of data for the AH1 and 34144 revolutions of data
for the OH58c. Each row, representing one revolution, indicates the maneuver
being performed during that revolution and the following 30 quantities: Rev-
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olutions per minute of the planetary gear, torque (mean, standard deviation,
skew, and kurtosis), and vibration data from six accelerometers (root-mean-
square, skew, kurtosis, and a binary variable indicating whether signal clipping
occurred). For the AH1, also available were the mean and standard deviation
values for the following attitude data from a 1553 bus: altitude, speed, rate of
climb, heading, bank angle, pitch, and slip.

3 Methodology

Sample torque and RPM data from one maneuver separated by pilot and by
flights are shown in Figures 2 and 3, respectively. The highly-variable nature of
the data and differences due to different pilots and different times of day when the
aircraft were flown, are clearly visible and make this a challenging classification
problem. We chose multilayer perceptrons (MLPs) with one hidden layer and
radial basis function (RBF) networks as base classifiers. We also constructed
ensembles of each type of classifier and ensembles consisting of half MLPs and
half RBF networks, because ensembles have been shown to improve upon the
performances of their base classifiers, particularly when the correlations among
them can be kept low [10,11]. In particular, we use averaging ensembles (the
output of the ensemble is the average of the outputs of the base classifiers)
because of its combination of simplicity and high performance relative to many
more sophisticated methods [2].

We created data sets for each of the two aircraft by combining its 176 sum-
mary matrices. This resulted in 31475 patterns (revolutions) for the AH1 and
34144 for the OH58. Both types of classifiers were trained using a randomly-
selected two-thirds of the data (21000 examples for the AH1, 23000 for the
OH58) and were tested on the remainder for the first set of experiments. Each
aircraft’s complete set of available inputs (described in section 2) was used.

We calculated the confusion matriz of every classifier we created. Entry (i, j)
of the confusion matrix of a classifier states the number of times that an exam-



Table 2. Sample confusion matrix for OH58 (MLP).

True Predicted Class

Class 1|2|3|4|5|6|7|8|9|10|11|12|13|14
1 693 0] 7[6[79]0] 0 ]JO[]O[O]O]O[O]O
2 0167900010 0 0 0 0 0 0 (47| 0
3 55| 1 [568{64 (31| 6 0 |11] 9 1|11 71013
4 26| 0 [43(691|15] O 0 3 0 0 0 2101
5 ||196] 0 |68 |41 [412] O 0 0 0 0 2 (161010
6 0(0|0|0|O0]719] O 0 0 0 0 0010
7 0({0|0[0]0]|0]|1079] O 0 0 0 0|00
8 0(91(22(16] 01| 0 0 [748({177(97 (11| 6 [ 3|0
9 O[1[1[6]0[0] 0 [172]381]162] 4 [ 7 [ 6] 0
10 0|l4]1]6[0]O0 0 [186(170(376| O 8 |13 0
11 410|154 [3|0 0 2 1 0 (494|217, 0 | O
12 3107|640 0 2 1 0 [200(531| 0 | O
13 0(63{0(0]0]O0 0 4 1 0 0 0 |712] O
14 0[0|0[O0O]O0]O 0 0 0 0 0 0| 0 (685

ple of class i is classified as class j. The confusion matrices (see Table 2 for an
example of a confusion matrix—entry (1, 1) is in the upper left corner), indicate
that particular maneuvers were continually confused with one another. In par-
ticular, the three hover maneuvers (8-Hover, 9-Hover Turn Left, and 10-Hover
Turn Right) were frequently confused with one another and the two coordinated
turns (11-Coordinated Turn Left and 12-Coordinated Turn Right) were also fre-
quently confused (the counts associated with these errors are shown in bold
in Table 2.) The maneuvers within these groups are similar enough that mis-
classifications within these groups are unlikely to imply the presence of faults.
Therefore, for the second set of experiments, we recalculated the classification ac-
curacies allowing for these misclassifications. In section 4, we refer to the results
of these experiments as “Post-Consolidated” because the class consolidation was
performed after the learning.

For our third set of experiments, we consolidated these two sets of maneuvers
in the data before running the experiments. That is, we combined the hover
maneuvers into one class and the coordinated turns into one class, yielding a
total of 11 possible predictions instead of the original 14. In section 4 we refer to
these as “Pre-Consolidated” results since the consolidation was done before the
learning. We expected the performance to be best for this third set of experiments
because, informally, the classifiers do not have to waste resources distinguishing
among the two sets of similar maneuvers.

Finally, we used the knowledge that a helicopter needs some time to change
maneuvers. That is, two sequentially close patterns are unlikely to come from
different maneuvers. To obtain results that use this “prior” knowledge, we tested
the classifiers from the previous experiments on sequences of revolutions by av-
eraging the classifiers’ outputs on a window of examples surrounding the current
one. In one set of experiments, we averaged over windows of size 17 (8 revolu-



Table 3. OH58c Single Revolution Test Set Results.

Base | N Single Corr Post-Run Corr Pre-Run Corr
Type Rev Consolidated Consolidated

1 179.789 £ 0.072| — {|92.709 &+ 0.055] — {|93.566 + 0.060| —
MLP | 4 |81.997 £ 0.065|0.4193((93.820 £ 0.044|0.4118||94.422 £ 0.038|0.4443
1082.441 £ 0.045|0.4193(|94.015 £ 0.028|0.4133||94.672 % 0.032|0.4395
100{82.771 £+ 0.016{0.4199({94.133 £ 0.011]0.4139{(94.672 £ 0.032(0.4374
1 175.451 £ 0.103] — ||89.305 & 0.080f — {/90.460 £+ 0.169| —
RBF | 4 |75.817 £ 0.048|0.7164(89.485 & 0.047(0.7046|{90.912 £ 0.056(0.5877
10 |75.871 £ 0.040]0.7185(|89.498 £ 0.034(0.7058/{90.987 % 0.032|0.6009
50 {75.908 &+ 0.016(0.7162|89.506 + 0.011]0.7058((91.018 + 0.014|0.6028
2 [80.190 % 0.079]0.3687({92.834 £ 0.065(0.3176{(93.777 £ 0.046|0.2905
MLP/| 4 (80.946 + 0.059/0.4352|/93.189 + 0.042(0.3997|(94.097 + 0.048|0.3788
RBF | 10 |81.406 % 0.043|0.4574({93.403 £ 0.039(0.4273|(94.348 £ 0.025|0.3941
100{81.543 + 0.020{0.4681||93.463 + 0.017]0.4392|(94.457 £ 0.011|0.4056

tions before the current one, the current one, and 8 revolutions after the current
one) which corresponds to about three seconds of real time. Because the initial
training and test sets were randomly chosen from the original data sequence,
this averaging could not be performed on the test set alone. Instead it was per-
formed on the full data set for both helicopters. In order to isolate the benefits of
window averaging, we also compute the errors of the single-revolution classifiers
on this full dataset.!

4 Experimental Results

In this section we describe the experimental results that we have obtained so
far. We first discuss results on the OH58 helicopter. In Table 3, the column
marked “Single Rev” shows the accuracies of individual networks and ensem-
bles of various sizes on the summary matrices randomly split into training and
test sets. We only present results for some of the ensembles we constructed due
to space limitations and because the ensembles exhibited relatively small gains
beyond 10 base models. MLPs and ensembles of MLPs outperform RBFs and
ensembles of RBFs consistently. The ensembles of MLPs improve upon single
MLPs to a greater extent than ensembles of RBF networks do upon single net-
works, indicating that the MLPs are more diverse than the RBF networks. This
is corroborated by the fourth column (marked “Corr”)? which shows that the av-

! We performed this windowed averaging as though the entire data were collected
over a single flight. However, it was in fact collected in stages, meaning that there
are no transitions between maneuvers. We show these results to demonstrate the
applicability of this method to sequential data obtained in actual flight after training
the network on “static” single revolution patterns.

Each correlation in this paper is the average of the correlations of every pair of base
classifiers in the ensemble. We calculate the correlation of a pair of classifiers as the
number of test patterns that the two classifiers agree on but misclassify, divided by



Table 4. OH58c Full Data Set Results.

Base | N Window Corr Window 17 Corr Window 17 Corr
Type of 17 Post-Consolidated Pre-Consolidated

1 189.905 + 0.121| - 96.579 £ 0.066 - 97.586 £ 0.078 -
MLP | 4 |90.922 + 0.074|0.5014|| 96.799 &+ 0.026 [0.6145|| 97.635 £ 0.041 |0.6258
10 (91.128 £ 0.064|0.5013|| 96.820 £ 0.018 |0.6255|| 97.729 £ 0.031 |0.6067
100{91.307 &+ 0.015/0.5052(| 97.063 &+ 0.140 [0.6290|| 97.695 £ 0.006 |0.6086
1 |82.564 + 0.154| - 92.831 £ 0.103 - 94.611 £+ 0.124 -
RBF | 4 |82.634 &+ 0.059(0.7509(| 92.882 4 0.047 (0.7755|| 94.548 + 0.063 |0.5870
10 (82.618 £ 0.055|0.7543|| 92.895 £ 0.043 |0.7758| 94.517 &+ 0.029 |0.6001
50 [82.644 £ 0.019/0.7505|| 92.901 + 0.013 |0.7747| 94.524 £ 0.012 |0.6072
2 |88.674 £ 0.108(0.3652|| 95.910 £ 0.059 |0.3596(| 97.155 £ 0.045 |0.3419
MLP/| 4 |88.895 + 0.078(0.4520|| 95.902 + 0.040 |0.4791|| 97.145 + 0.067 |0.4383
RBF | 10 |89.140 & 0.057/0.4788|| 95.980 £ 0.033 |0.5143|| 97.226 & 0.032 |0.4576
100{89.320 &+ 0.025(0.4937(| 96.003 &+ 0.012 |0.5335|| 97.204 £ 0.009 |0.4706

Base | N Single Corr Single Rev Corr Single Rev Corr
Type Rev Post Consolidated Pre-Consolidated

1 182.097 + 0.072| - 93.539 £ 0.058 - 94.495 + 0.064 -
MLP | 4 |84.304 £ 0.049|0.4069|| 94.622 £ 0.039 |0.4019|| 95.321 £ 0.035 |0.4443
10 |184.750 £ 0.043|0.4075|| 94.805 £ 0.028 |0.4029|| 95.540 £ 0.029 |0.4372
100(85.048 £ 0.012(0.4081|| 94.922 4+ 0.011 |0.4036( 95.595 £ 0.008 |0.4355
1 {76.406 £ 0.099] - 89.680 £ 0.077 - 90.788 £ 0.147 -
RBF | 4 |76.799 + 0.040(0.7164|| 89.872 4+ 0.039 |0.7142|| 91.187 + 0.045 |0.6027
10 |76.836 £ 0.033]|0.7186|| 89.902 £ 0.027 |0.7162|| 91.244 £+ 0.027 (0.6157
50 (76.910 & 0.011]0.7162|| 89.948 &+ 0.007 |0.7143| 91.271 £ 0.013 |0.6182
2 182.146 £+ 0.075(0.3613|| 93.523 £ 0.061 [0.3172|| 94.587 & 0.049 |0.2883
MLP/| 4 |82.877 + 0.053(0.4293|| 93.854 + 0.041 |0.4022|| 94.876 + 0.051 |0.3783
RBF | 10 |83.332 & 0.036|0.4516|| 94.066 £ 0.029 |0.4291|| 95.089 % 0.024 |0.3948
100(83.505 & 0.015(0.4618|| 94.142 &+ 0.015 |0.4406( 95.163 £ 0.014 |0.4076

erage correlations among the base models are much higher for ensembles of RBF
networks than ensembles of MLPs. Mixed ensembles perform worse than pure-
MLP ensembles and better than pure-RBF ensembles for all numbers of base
models. The standard errors of the mean performances decrease with increas-
ing numbers of base models as is normally the case with ensembles. The column
marked “Post-Run Consolidated” shows the single revolution results after allow-
ing for confusions among the hover maneuvers and among the coordinated turns,
consolidating them into single classes. As expected, the performances improved
dramatically. The column “Pre-Run Consolidated” shows the single revolution
results on the summary matrices in which the hovers and coordinated turns
were consolidated before learning as described in section 3. The performances
here were consistently the highest as we had hypothesized. In all these experi-
ments, the improvement due to adding base models to the ensemble increases as
the average correlation decreases, as expected.

the number of patterns that at least one classifier misclassifies. Note that this is not
the posterior-based correlation used in [10, 11].



Table 5. AH1 Results.

Base | N Single Corr Single Corr || Window of | Corr
Type Rev Test Rev Full 17

1 196.752 &£ 0.059) — ||96.933 + 0.060f — ||98.344 £ 0.059| —
MLP | 4 |97.284 + 0.031]0.4155((97.555 £ 0.025|0.3966|{98.757 £ 0.031|0.4052
10 (97.448 £ 0.027|0.4130(|97.683 £ 0.013|0.3973|198.779 £ 0.021]0.4105
100]97.542 £ 0.006{0.4128((97.762 £ 0.008|0.3981|{98.861 & 0.006|0.4055
1 195.669 + 0.059| — ||95.743 £ 0.067| — |96.662 £ 0.102
RBF | 4 |95.946 £+ 0.029(0.6462(|96.063 + 0.032|0.6369((96.988 + 0.042|0.6668
10 {95.911 £ 0.023]0.6561|{96.042 £ 0.026|0.6456||96.968 + 0.028|0.6764
50 (95.946 £ 0.009(0.6538(/96.067 £ 0.005|0.6321(|97.003 £ 0.008]0.6735
2 197.040 £ 0.054(0.3120(|97.231 + 0.055|0.2933|(98.256 + 0.064|0.2313
MLP/| 4 |97.318 + 0.025|0.3698||97.502 + 0.028(0.3539|{98.482 + 0.034|0.3148
RBF |10 |97.429 + 0.018(0.4040({97.570 £ 0.018]0.3899|(98.475 £ 0.028(0.3577
100]97.521 £ 0.011{0.4160{{97.659 £ 0.008|0.3978|{98.553 £ 0.005|0.3739

The top half of Table 4 shows the results of performing the windowed averag-
ing described in the previous section in the column marked “Window of 17.” The
columns “Window 17 Post-Consolidated” and “Window 17 Pre-Consolidated”
give the results allowing for the confusions mentioned earlier. The bottom half
of the table gives the full set errors of the single-revolution classifiers. We can
clearly see the benefits of windowed averaging, which serves to smooth out some
of the noise in the data.

Table 5 gives all the AH1 results. The column marked “Single Rev” shows the
results with the AH1 summary matrices randomly split into training and test
sets. The next column has the results of the same single-revolution classifiers
on the full data set (training and test combined). The final column gives the
results of the windowed averaging method. We do not present the results of the
second and third set of experiments (with maneuver consolidation) because they
ranged from 99.404% to 100%. The AH1 results are substantially better than
the OH58 results. We expected this because the AH1 is a heavier helicopter, so
it is less affected by conditions that introduce noise such as high winds. With
the AH1 pure-MLP ensembles always outperform mixed ensembles when using
windowed averaging. However, in the single-revolution case, the mixed ensembles
outperform the pure ensembles for small numbers of base models but perform
worse than the MLP ensembles for larger numbers of base models. This is also
true with maneuvers consolidated; however, all these performances are very high.
Once again, we can see that ensembles of MLPs outperform single MLPs to a
greater extent than ensembles of RBFs outperform single RBFs, so the RBFs
are not as different from one another. The average correlations among the base
models are consistent with this. Because of this, it does not help to add large
numbers of RBF networks to an MLP ensemble. The standard errors of the mean
performances tend to decrease with increasing numbers of base models just as
with the OH58.



Table 6. AH1 Bus and Non-Bus Results

Inputs

Single
Rev

Single Rev
Consolidated

Window
of 17

Window of
17 Consolidated

All

96.752 £ 0.059

99.843 + 0.032

98.344 £ 0.059

99.737 £ 0.028

Bus

90.380 £+ 0.110

95.871 £ 0.091

91.209 £ 0.126

96.027 £ 0.086

Non-Bus

87.884 + 0.228

93.731 £ 0.171

92.913 + 0.355

96.110 £ 0.236

P(agree)|79.523 £ 0.247

90.063 £ 0.202

85.609 £ 0.320

93.393 £ 0.247

On the AH1, the hover maneuvers were frequently confused just as they were
on the OH58, but the coordinated turns were not confused. Taking this con-
fusion into account boosted performance significantly. The windowed averaging
approach did not always yield improvement when allowing for the maneuver con-
fusions, but helped when classifying across the full set of maneuvers. However,
in all cases when windowed averaging did not help, the classifier performance
was at least 99.6%, so there was very little room for improvement.

5 Discussion

In this paper, we presented an approach to fault detection that contains a subsys-
tem to classify an operating aircraft into one of several states, with the idea that
mismatches between the predicted and actual state is a strong indicator that a
fault is present. The classifier predicts the maneuver given vibration data and
other available data and compares that prediction with the known maneuver.
Through experiments with two helicopters, we demonstrated that the classifier
predicts the maneuver with good reliability, especially when using ensemble clas-
sifiers. These results show great promise in predicting the true maneuver with
high certainty, enabling effective fault detection. Future work will involve apply-
ing this approach to “free-flight data”, where the maneuvers are not static or
steady-state, and transitions between maneuvers are recorded.

We are currently constructing classifiers using different subsets of the avail-
able data as inputs. For example, for the AH1, we have constructed some classi-
fiers that use only the bus data as input and others that use only the vibration
data. We hypothesize that disagreement among these classifiers that use differ-
ent sources of information may indicate the presence of a fault. For example,
if the vibration data-based classifier predicts that the aircraft is flying forward
at high speed but the bus data-based classifier predicts that the aircraft is on
the ground, then the probability of a fault is high. Table 6 shows the results
of training 20 single MLPs on these data using the same network topology as
for the other MLPs trained on all the AH1 data. They performed much worse
than the single MLPs trained with all the inputs presented at once. The last line
in the table indicates the percentage of maneuvers for which the two types of
classifiers agreed. We would like these agreement probabilities to be much higher
because none of our data contains faults. However, simpler uses of the bus data
may lead to better performance. For example, if a vibration data-based classifier



predicts forward flight, but the bus data indicate that the altitude is zero, then
the probability of a fault is high. We did not need a classifier that uses all the
bus data to draw this conclusion. We merely needed to know that a zero altitude
is inconsistent with a forward flight. We plan to study the bus data in detail so
that we may construct simple classifiers representing knowledge of the type just
mentioned and use them to find inconsistencies such as what we just described.
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